Six Reasons Why Toxin Binders May Not Work


Six Reasons Why Toxin Binders May Not Work


Toxin binders constitute the most conventional type of anti-mycotoxin product. Comprised of various adsorbents, they are added to feed in minute quantities in order to dispose of mycotoxins within the gastro-intestinal tract, thereby reducing harm to animals.


However, there are instances where a mycotoxin adsorbent may not deliver the expected results.

Learn More


1. Insufficient dosage based on sampling error

The appropriate dosage level of a mycotoxin deactivator depends on the extent of mycotoxin contamination of the feed materials found. In some cases, applying 0.5kg of binder per metric tonne of feed is sufficient to cope with a mycotoxin contamination challenge.


Other times, the same dosage based on the same mycotoxin analysis results may be insufficient because the real contamination level is much higher. While modern methods such as LC-MS/MS and HPLC show mycotoxins contamination levels of feed materials sample with high accuracy, incorrect sampling can lead to non-representative results. In fact, nearly 80% of errors in determining the actual level of mycotoxin contamination come from sampling procedure mistakes.

READ ALSO: Firm Launches First Wholly Made-in-Nigeria Tomato mix

2. Mismatch between challenge and solution

More than 500 mycotoxins and metabolites have been characterised. Due to the frequency of occurrence and level of losses caused in animal production –


5 main groups of mycotoxins are distinguished:


ochratoxin A,


trichothecenes and



3. Antinutritional factors

Well-known antinutritional factors include saponins, tannins, protease inhibitors and phytic acid. Phytoestrogens, polyphenolic compounds produced by plants, are less well-known antinutritional factors that primarily occur in legumes such as soy, clover and alfalfa.

Phytoestrogens are structurally similar to oestrogen, the primary female sex hormone. Due to this similarity, phytoestrogens bind to oestrogen-receptors and therefore exert oestrogenic effects in animals. The mycotoxin zearalenone is also an oestrogenic substance and well-known for its detrimental effect on reproductive performance. Co-occurring phytoestrogens may aggravate the effect of zearalenone. If this is suspected to be an issue, producers can test feed for the presence of phytoestrogens using a validated LC-MS/MS method. If phytoestrogens are present, it may be prudent to adjust the inclusion rate or source of certain feed materials.


4. Improper mixing

Uniform distribution of an anti-mycotoxin additive in the ration is an important though often overlooked topic. While primarily a concern for home mixers, it is also relevant for feed mills and integrators. If there is 1kg of the product mixed in 1,000kg of feed, then uniform distribution is crucial – otherwise performance may fluctuate widely within a herd.

Many factors may influence the proper distribution of the feed additive in the ration and its availability for all animals such as the use of concentrated additives, the order of adding the raw materials to the mixer, the type of raw materials and their degree of fragmentation, as well as the time of mixing. Issues related to product distribution uniformity can be addressed by regularly checking your feed for homogeneity.


5. Poor quality components

With hundreds of toxin binder products available on the market, producers have nearly unlimited choice. Examples of binder materials include silicates, clays, yeast and charcoal. Some materials are better at binding than others.

Bentonites, clay minerals which result from the decomposition of volcanic ash consisting mainly of the phyllosilicate mineral montmorillonite (smectite), have received EU authorisation for the deactivation of aflatoxin B1 (AfB1) in animal feed. Activated charcoal represents a very unspecific binder, meaning that it also adsorbs nutrients – so producers are essentially paying to reduce feed quality. Producers are advised to carefully select a binder that is backed by scientific results and demonstrated success in the field.

READ ALSO: Factors to Consider in Selecting the Most Effective Toxin Binders

6. Incorrect diagnosis, e.g. tail necrosis in pigs

Tail necrosis is a common swine affliction that occurs unpredictably and jeopardises performance. Tail necrosis appears in animals of all ages, from new born piglets to finishers.

Several mycotoxins are known to contribute to tail necrosis. Ergot alkaloids exert vasoconstriction effects leading to ischaemia and dry gangrene. From this, necrosis can develop in the ear, tail and hooves of piglets. Trichothecenes such as T-2 toxin or desoxynivalenol (DON) have been reported as a cause of tail necrosis.


Application of a proven mycotoxin deactivator may help alleviate the situation in some cases but not in others. Because differential diagnosis of tail necrosis can be tricky, other causes may be at work.


Certain nutritional deficiencies that cause dermatitis (zinc, group B vitamins, essential fatty oils) may also have a direct effect on tail necrosis. Insects can also be the culprit. A number of environmental factors can lead to tail necrosis including:

Air humidity

Inappropriate tail clipping management

Not rinsing off strong (alkaline) disinfectants after use

Small injuries from slatted or abrasive flooring

In these cases, it makes sense to review health status, pest control, feed formulation and management practices in order to address the issue.

Contributed by Renata Olejniczak

Click here to join World Farmers Centre Whatsapp group to get and read more articles like this and interact with other farmers


We do everything possible to supply quality information for farmers day in, day out and we are committed to keep doing this. Your kind donation will help our continuous research efforts.


Please enter your comment!
Please enter your name here